Mouse Molecular Genetics


Research Interests

Mouse models of human diseases, gene therapy, gene editing, adeno-associated virus (AAV), liver metabolic disorders.

Description of Research

The research interests of the Group focus on the study of disease mechanisms of metabolic genetic diseases, and in the development of therapeutic approaches for their cure, ranging from pharmacological therapies to gene therapy and gene editing, using transgenic and engineered mouse models of the human syndromes.

Our projects aim at developing efficacious therapies for severe pediatric liver diseases, for which there are no therapeutic alternatives except for liver transplantation, a very risky procedure with several limitations. We are concentrating our efforts in a paradigmatic metabolic liver disease: the Crigler Najjar Syndrome type I (CNSI). The disease is characterised by severe jaundice (elevated blood levels of bilirubin) since birth and a lifelong risk of bilirubin encephalopathy, with severe and permanent brain damage and death if untreated. The clinical management of the disease is very difficult as patients have to receive life-long phototherapy treatment (about 10-12 hours/day) and its effectiveness reduces with age. Liver transplantation is currently the only definitive treatment available.

We are addressing the mechanisms at the basis of bilirubin neurotoxicity and the possible therapeutic approaches to cure the disease. We are studying mechanisms of diseases and therapies, including genes that modify the severity of bilirubin-induced neurological damage, bilirubin-mediated inflammation and cell death, DNA damage, testing pharmacological therapies, gene therapy and gene editing approaches, which are being developed and tested in a CNSI mouse model.
The gene therapy experiments in mouse models have the final aim of transferring the methodologies to the clinics. We are currently participating to a network composed of several laboratories and clinical centers in Europe to perform a phaseI/II clinical trial for Crigler-Najjar syndrome patients, using AAV-vector mediated liver gene transfer.

We are also applying gene therapy approaches to other liver diseases, such as ornithine transcarbamylase deficiency and citrullinemia, two very severe disorders of the urea cycle.

Recent Publications

Bortolussi G, Muro AF. 2018. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opinion on Orphan Drugs 6:425-439 

Vodret S, Bortolussi G, Iaconcig A, Martinelli E, Tiribelli C, Muro AF. 2018. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain Behav Immun 70:166-178 PubMed link

Bockor L, Bortolussi G, Iaconcig A, Chiaruttini G, Tiribelli C, Giacca M, Benvenuti F, Zentilin L, Muro AF. 2017a. Repeated AAV-mediated gene transfer by serotype switching enables long-lasting therapeutic levels of hUgt1a1 enzyme in a mouse model of Crigler-Najjar Syndrome Type I. Gene Ther 24:649-660 PubMed link

Bockor L, Bortolussi G, Vodret S, Iaconcig A, Jasprova J, Zelenka J, Vitek L, Tiribelli C, Muro AF. 2017b. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia. Hum Mol Genet 26:145-157 PubMed link

Porro F, Bortolussi G, Barzel A, De Caneva A, Iaconcig A, Vodret S, Zentilin L, Kay MA, Muro AF. 2017. Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model. EMBO Mol Med 9:1346-1355 PubMed link

Vodret S, Bortolussi G, Jasprova J, Vitek L, Muro AF. 2017. Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 (-/-) mouse model. J Neuroinflammation 14:64 PubMed link