Research Groups

Sujatha Sunil

Vector Borne Diseases

Group Leader

Research Interests and Description

Group Members

Sujatha Sunil

International Centre for Genetic Engineering and Biotechnology
Aruna Asaf Ali Marg
110 067 New Delhi, India

E-mail:  sujathaicgeb.res.in
Office tel: +91-11-26741358/26741361/26742357/26742360 ext. 163
Fax: +91-11-26162316

Education

Madras University, MSc, 1994
MGR Medical University, PhD, 2000

Career History

Since 2016, Group Leader, Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, ICGEB New Delhi, India
2012, Visiting Scientist, University of Texas Medical Branch, Galveston, Texas, USA
2010-2015 Research Scientist (Ramanujan Fellow), Insect Resistance Group, ICGEB New Delhi, India
2007-2010 Research Scientist, Clininvent Pvt Ltd., New Delhi
Adjunct Faculty, Institute of Molecular Medicine, New Delhi
2004-2007 Postdoc, ICGEB New Delhi
2001-2004 Research Associate, National Institute of Malaria Research, New Delhi
2000-2001 Research Scientist, All India Institute of Medical Sciences, New Delhi

Teaching Activity

Course coordinator for PhD course on Cell Biology & Molecular Biology of Cells.
Part of teaching faculty at ICGEB New Delhi.

Scientific Activity

Research involves understanding the basis of pathogenesis in important vectors of India and devising transmission-blocking approaches to control vector borne diseases. Our group have two major focus research areas, namely virus evolution and host/vector-pathogen interactions.

Preliminary work on studying evolution of chikungunya virus in our country revealed the emergence of a new molecular signature in Indian isolates. Work is underway to study the effect of these mutations on pathogenicity of the virus and its virulence. Using high-throughput Next Generation Sequencing platforms and computational biology approaches, my lab is involved in understanding the impact of pathogen development on insect miRNome, insect immunity and redox cascade. Our work on insect small RNA population has provided important insights to the role of microRNAs in pathogenesis and insect immunity. We are currently working on deciphering the role of viral RNAi suppressors and insect defense and the impact of co-infection of chikungunya with dengue viruses in both vector and host.

Selected publications

Kumar A, Priyanshu Srivastava P#, Sirisena PDNN, Dubey SK, Ramesh Kumar, Shrinet J, Sunil S*. Mosquito Innate Immunity. Insects 2018, 9(3), 95.

Jain J, Kumar A, Narayanan VN, Ramaswamy RS, Sathiyarajeswaran P, Shree Devi MS, Kannan M, Sunil S. In-vitro evaluation of anti-viral activity of ethanol extract of Nilavembu Kudineer against Dengue and chikungunya virus infection. Journal of Ayurveda and Integrative Medicine. 2018. Accepted.

Sirisena PDNN, Kumar A, Sunil S. Evaluation of Aedes aegypti life table attributes upon chikungunya virus replication reveals impact on egg laying pathways. Journal of Medical Entomology. 2018. Jun 21. doi: 10.1093/jme/tjy097.

Shrinet J, Bhavesh NS, Sunil S. Understanding Oxidative Stress in Aedes during chikungunya and dengue virus infections using Integromics Analysis. 2018. Viruses. Viruses 2018, 10, 314; doi:10.3390.

Jain J, Okabayashi T, Kaur N, Nakayama E, Shioda T, Gaind R, Kurosu T, Sunil S. Evaluation of an immunochromatography rapid diagnosis kit for detection of chikungunya virus antigen in India, a dengue-endemic country. Virol J. 2018 May 11;15(1):84.

Jain J, Narayanan VN, Pai S, Sunil S. Standardization of invitro assays to evaluate the activity of polyherbal siddha formulations against chikungunya virus infection. 2018.  Virusdisease. 2018 Mar;29(1):32-39. doi: 10.1007/s13337-018-0421-0. Epub 2018 Jan 25.

Jain J, Narayanan VN, Chaturvedi. S, Pai S, Sunil S.  Invivo evaluation of Withania somnifera based Indian traditional formulation (Amukkara Choornam), against chikungunya virus induced arthralgia. J Evid Based Integr Med. 2018 Jan-Dec;23:2156587218757661. doi: 10.1177/2156587218757661.

Dubey SK, ShrinetJ, JainJ, AliS, Sunil S.. Aedes aegypti microRNA miR-2b regulates ubiquitin related modifier to control chikungunya virus replication. 2017. Sci Rep. Dec 15;7(1):17666

Jain J, Kumari A, Somvanshi P, Grover A, Pai S, Sunil S. Insilico analysis of natural compounds targeting structural and nonstructural proteins of chikungunya virus. 2017. F1000Research, 6:1601 (doi: 10.12688/f1000research.12301.1)

Kaur N, Jain J, Kumar A, Narang M, Zakaria MK, Marcelo A, Kumar D, Gaind R, Sunil S. Chikungunya outbreak in Delhi, India, 2016: A Report on the co-infection status and co-morbid conditions in patients. 2017. New Microbes New Inf. 2017. Vol. 20, p39–42.

Jain J, Nayak K, Tanwar N, Gaind R, Gupta B, Shastri JS, Bhatnagar RK, Murali Krishna Kaja MK, Chandele A, Sunil S. Clinical, Serological and Virological analysis of 572 chikungunya patients during the years 2010-2013 from India. Clin Infect Dis. 2017 Apr 1. doi: 10.1093/cid/cix283.

Jain J, Dubey SK, Jatin Shrinet J and Sunil. S. Dengue Chikungunya co-infection: A live-in relationship?? Biochem Biophy Res Comm. 2017. Feb 9. doi: 10.1016/j.bbrc.2017.02.008.

Shrinet J, Srivastava, P and Sunil S. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of Dengue virus-2 and Chikungunya virus. Biochem Biophys Res Commun. 2017 Feb 1. doi: 10.1016/j.bbrc.2017.01.162.

MathurK, Anand A, Dubey SK, Sanan-Mishra N, Bhatnagar RK1*, Sunil S. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference (RNAi) suppressor activity. Sci Rep. 2016 Nov 30.

Shrinet J, Shastri JS, Gaind R, Bhavesh NS, Sunil S. Serum metabolomics analysis of patients with chikungunya and dengue mono/co-infections reveals distinct metabolite signatures in the three disease conditions. Sci Rep. 2016 Nov 15;6:36833. doi: 10.1038/srep36833.#

Jain J, Kushwah RBS, Singh SS, Sharma A, Adak T, Singh OP, Bhatnagar RK, Subbarao SK, Sunil S*. Evidence For Natural Vertical Transmission Of Chikungunya Viruses In Field Populations Of Aedes Aegypti In Delhi And Haryana States In India. Acta Tropica. 2016 Jun 6#

Jain J, Mathur K, Shrinet J, Bhatnagar RK, Suni S*. Analysis of coevolution in nonstructural proteins of Chikungunya Virus. Virology J 2016. Jun 2;13(1):86

Shrinet J, Agrawal A, Bhatnagar RK, Sunil S. Analysis of the genetic divergence in Asian strains of ZIKA virus with reference to 2015-2016 outbreaks. [Submitted]. Bull World Health Organ. E-pub: 22 Apr 2016. doi: http://dx.doi.org/10.2471/BLT.16.176065

Londhey, V., Aggarwal, S, Vaidya, N., Shastri, JS., and Sunil, S.* Chikungunya and dengue co-infections-the inside story. Journal of Assoc. Physicians India 2016. 64

JainS, ShrinetJ, TridibesA, BhatnagarRK and SunilS* miRNA-mRNA conflux regulating immunity and oxidative stress pathways in the midgut of blood fed Anopheles stephensi. Non-Coding RNA 2015, 1(3), 222-245

Jain S, Rana V, TridibesA, SunilS and Raj K Bhatnagar.  Dynamic expression of miRNAs across immature and adult stages of the malaria mosquito Anopheles stephensi. Parasite & Vectors. 2015. 2015 Mar 25;8(1):179.

Shrinet, J., Nandal, UK., Adak, T., Bhatnagar, RK., and Sunil, S.* Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection. PLoS One. 2014 Dec 4;9(12):e114461. doi: 10.1371/journal.pone.0114461.

Jain S, Rana V, Shrinet J, Sharma A, Tridibes A, Sunil S* and Bhatnagar RK*. Blood feeding and Plasmodium infection alters the miRNome of Anopheles stephensi. PLoS ONE. 2014 May 27;9(5):e98402.

Shrinet J, Jain S, Jain J, Bhatnagar RK*and Sunil S*. Next Generation Sequencing reveals regulation of distinct microRNAs of Aedes during chikungunya virus development. PLoS Negl Trop Dis 2014, 8(1): e2616. doi:10.1371/journal.pntd.0002616.

Sunil S, Singh OP, Nanda N, Raghavendra K, Reddy BPN, Subbarao SK. Analysis of population genetic structure of Indian Anopheles culicifacies species A using microsatellite markers. Parasites & Vectors, 2013, 6:166.

Shrinet J, Jain S, Sharma A, Singh SS, Mathur K, Rana V, Bhatnagar RK, Gupta B, Gaind R, Deb M, Sunil S*. Genetic characterization of Chikungunya virus from New Delhi reveal emergence of a new molecular signature in Indian isolates. Virology Journal, 2012, 9:100.

Sunil S, Chauhan VS and Malhotra P. Distinct and stage specific nuclear factors regulate the expression of falcipains, Plasmodium falciparum cysteine proteases. BMC Molecular Biology. 2008, May 14; 9:47.

Sunil S, Hossain M, Ramasamy G and Malhotra P. Transient silencing of Plasmodium falciparum Tudor Staphylococcal Nuclease suggests an essential role for the protein. Biochem Biophy Res Comm. 2008, Jul 25; 372(2):373-8.

Mamillapalli A, Sunil S**, Diwan SS, Sharma SK, Tyagi PK, Adak T, Joshi H, Malhotra P. Polymorphism and epitope sharing between the alleles of merozoite surface protein-1 of Plasmodium falciparum among Indian isolates. Malaria Journal. 2007, 6:95.

Sunil S*, Raghavendra K , Singh OP, Malhotra P, Huang Y, Zheng L, and Subbarao SK. Isolation and characterization of microsatellite markers from malaria vector, Anopheles culicifacies. Molecular ecology notes. 2004. 4-3: 698.

Amanda M, Sunil S**, Ahmad G, Mohmmed A, Marcela E, Mauricio C, Silvia B, Chauhan VS and Malhotra P. Inter-allelic recombination in the P.vivax merozoite surface protein 1 gene among Indian and Colombian isolates. Malar Journal. 2004, 3:4

Singh OP, Chandra D, Nanda N, Raghavendra K, Sunil S, Sharma SK, Dua VK and Subbarao SK. Differentiation of members of Anopheles fluviatilis species complex by allele-specific polymerase chain reaction based on 28S ribosomal DNA sequences. Am. J. Trop. Med. Hyg. Jan, 2004; 70 (1), 27-32.

ICGEB New Delhi

ICGEB Campus
Aruna Asaf Ali Marg
110 067 New Delhi
INDIA
Tel: +91-11-26741358/1007
Fax: +91-11-26742316
icgebicgeb.res.in

tl_files/iTunes_Badge_Color_master_10251024.png

 

 

tl_files/FB.png tl_files/Twitter_logo_blue-1def.png tl_files/rss.png
tl_files/LinkedIn-InBug-2CRev2.png tl_files/YouTube.png